skip to main content


Search for: All records

Creators/Authors contains: "Roeder, Karl A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evidence for global insect declines mounts, increasing our need to understand underlying mechanisms. We test the nutrient dilution (ND) hypothesis—the decreasing concentration of essential dietary minerals with increasing plant productivity—that particularly targets insect herbivores. Nutrient dilution can result from increased plant biomass due to climate or CO2enrichment. Additionally, when considering long-term trends driven by climate, one must account for large-scale oscillations including El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO). We combine long-term datasets of grasshopper abundance, climate, plant biomass, and end-of-season foliar elemental content to examine potential drivers of abundance cycles and trends of this dominant herbivore. Annual grasshopper abundances in 16- and 22-y time series from a Kansas prairie revealed both 5-y cycles and declines of 2.1–2.7%/y. Climate cycle indices of spring ENSO, summer NAO, and winter or spring PDO accounted for 40–54% of the variation in grasshopper abundance, mediated by effects of weather and host plants. Consistent with ND, grass biomass doubled and foliar concentrations of N, P, K, and Na—nutrients which limit grasshopper abundance—declined over the same period. The decline in plant nutrients accounted for 25% of the variation in grasshopper abundance over two decades. Thus a warming, wetter, more CO2-enriched world will likely contribute to declines in insect herbivores by depleting nutrients from their already nutrient-poor diet. Unlike other potential drivers of insect declines—habitat loss, light and chemical pollution—ND may be widespread in remaining natural areas.

     
    more » « less
  2. Abstract

    Ecologists search for rules by which traits dictate the abundance and distribution of species. Here we search for rules that apply across three common taxa of litter invertebrates in six North American forests from Panama to Oregon. We use image analysis to quantify the abundance and body size distributions of mites, springtails, and spiders in 21 1‐m2plots per forest. We contrast three hypotheses: two of which focus on trait–abundance relationships and a third linking abundance to species richness. Despite three orders of magnitude variation in size, the predicted negative relationship between mean body size and abundance per area occurred in only 18% of cases, never for large bodied taxa like spiders. We likewise found only 18% of tests supported our prediction that increasing litter depth allows for high abundance; two‐thirds of which occurred at a single deciduous forest in Massachusetts. In contrast, invertebrate abundance constrained species richness 76% of the time. Our results suggest that body size and habitat volume in brown food webs are rarely good predictors of variation in abundance, but that variation in diversity is generally well predicted by abundance.

     
    more » « less
  3. Abstract

    Changes in trophic niche—the pathways through which an organism obtains energy and nutrients—are a fundamental way in which organisms respond to environmental conditions. But the capacity for species to alter their trophic niches in response to global change, and the ways they do so when able, remain largely unknown.

    Here we examine food webs in three long‐term and large‐scale experiments to test how resource availability and nutritional requirements interact to determine an organism's trophic niche in the context of one of the largest global trends in land use—the rise in bioenergy production.

    We use carbon and nitrogen stable isotope analyses to characterize arthropod food webs across three biofuel crops representing a gradient in plant resource richness (corn monocultures, fields dominated by native switchgrass and restored prairie), and to quantify changes in the trophic niche of a widespread generalist ant species across habitats. In doing so, we measure the effects of basal resource richness on food chain length, niche breadth and trophic position. We frame our results in the context of two hypotheses that explain variation in trophic niche—the niche variation hypothesis which emphasizes the importance of resource diversity and ecological opportunity, and the optimal diet hypothesis which emphasizes dietary constraints and the availability of optimal resources.

    Increasing plant richness lengthened food chains by 10%–20% compared to monocultures. Niche breadths of generalist ants did not vary with resource richness, suggesting they were limited by optimal diet requirements and constraints rather than by ecological opportunity. The ants instead responded to changes in plant richness by shifting their estimated trophic position. In resource‐poor monocultures, the ants were top predators, sharing a trophic position with predatory spiders. In resource‐rich environments, in contrast, the ants were omnivores, relying on a mix of animal prey and plant‐based resources.

    In addition to highlighting novel ecosystem impacts of alternate bioenergy landscapes, our results suggest that niche breadth and trophic diversification depend more on the presence of optimal resources than on ecological opportunity alone.

     
    more » « less
  4. Abstract

    Across the globe, temperatures are predicted to increase with consequences for many taxonomic groups. Arthropods are particularly at risk as temperature imposes physiological constraints on growth, survival, and reproduction. Given that arthropods may be disproportionately affected in a warmer climate—the question becomes which taxa are vulnerable and can we predict the supposed winners and losers of climate change? To address this question, we resurveyed 33 ant communities, quantifying 20‐yr differences in the incidence of 28 genera. Each North American ant community was surveyed with 30 1‐m2plots, and the incidence of each genus across the 30 plots was used to estimate change. From the original surveys in 1994–1997 to the resurveys in 2016–2017, temperature increased on average 1°C (range, −0.4°C to 2.5°C) and ~64% of ant genera increased in more than half of the sampled communities. To test Thermal Performance Theory's prediction that genera with higher average thermal limits will tend to accumulate at the expense of those with lower limits, we quantified critical thermal maxima (CTmax: the high temperatures at which they lose muscle control) and minima (CTmin: the low temperatures at which ants first become inactive) for common genera at each site. Consistent with prediction, we found a positive decelerating relationship between CTmaxand the proportion of sites in which a genus had increased. CTmin, by contrast, was not a useful predictor of change. There was a strong positive correlation (r = 0.85) between the proportion of sites where a genus was found with higher incidence after 20 yr and the average difference in number of plots occupied per site, suggesting genera with high CTmaxvalues tended to occupy more plots at more sites after 20 yr. Thermal functional traits like CTmaxhave thus proved useful in predicting patterns of long‐term community change in a dominant, diverse insect taxon.

     
    more » « less
  5. Abstract

    Analyses of heat tolerance in insects often suggest that this trait is relatively invariant, leading to the use of fixed thermal maxima in models predicting future distribution of species in a warming world. Seasonal environments expose populations to a wide annual temperature variation. To evaluate the simplifying assumption of invariant thermal maxima, we quantified heat tolerance of 26 ant species across three seasons that vary two‐fold in mean temperature. Our ultimate goal was to test the hypothesis that heat tolerance tracks monthly temperature. Ant foragers tested at the end of the summer, in September, had higher average critical thermal maximum (CTmax) compared to those in March and December. Four out of five seasonal generalists, species actively foraging in all three focal months, had, on average, 6°C higher CTmaxin September. The invasive fire ant,Solenopsis invicta, was among the thermally plastic species, but the native thermal specialists still maintained higher CTmaxthanS. invicta. Our study shows that heat tolerance can be plastic, and this should be considered when examining species‐level adaptations. Moreover, the plasticity of thermal traits, while potentially costly, may also generate a competitive advantage over species with fixed traits and promote resilience to climate change.

     
    more » « less